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Abstract

The growing body of knowledge in biomedicine is too vast for human consumption. Hence

there is a need for automated systems able to navigate and distill the emerging wealth of

information. One fundamental task to that end is relation extraction, whereby linguistic ex-

pressions of semantic relationships between biomedical entities are recognized and extracted.

In this study, we propose a novel distant supervision approach for relation extraction of bi-

nary treatment relationships such that high quality positive/negative training examples are

generated from PubMed abstracts by leveraging associated MeSH subheadings. The quality

of generated examples is assessed based on the quality of supervised models they induce;

that is, the mean performance of trained models (derived via bootstrapped ensembling) on

a gold standard test set is used as a proxy for data quality. We show that our approach is

preferable to traditional distant supervision for treatment relations and is closer to human

crowd annotations in terms of annotation quality. For treatment relations, our generated

training data performs at 81.38%, compared to traditional distant supervision at 64.33% and

crowd-sourced annotations at 90.57% on the model-wide PR-AUC metric. We also demon-

strate that examples generated using our method can be used to augment crowd-sourced

datasets. Augmented models improve over non-augmented models by more than two abso-

lute points on the more established F1 metric. We lastly demonstrate that performance can

be further improved by implementing a classification loss that is resistant to label noise.
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1. Introduction

The growing body of knowledge in the biomedical domain, constituting over 27 million

articles indexed by PubMed1 as of 2018, is too vast for human consumption. These articles

span academic journals, books, and other resources covering a wide range of topics including

medicine, nursing, dentistry, pharmacy, biology, and healthcare. In order to leverage this

wealth of information, there has been intense research focus on creating high precision sys-

tems for information retrieval and question-answering. These efforts, under the broad theme

of knowledge discovery, rely on being able to intelligently recognize and capture semantic

relations as conveyed in natural language — hence the importance of relation extraction

systems. In this study, we focus on the binary relation extraction of treatment relations.

The task of binary relation extraction is simple: given some textual input, extract (sub-

ject, predicate, object) triples where subject and object are entities and predicate is a class

of semantic relation. For example, (insulin, treats, diabetes type 1 ) is a triple, or semantic

predication, that can be extracted from the sentence “Insulin is prescribed for the treatment

of Diabetes Type 1.” The difficult nature of this task becomes obvious when we consider

that such relationships can be expressed in a variety of complex yet valid ways.

The treats predicate is an important predicate in the medical domain, alongside causes,

and warrants special attention. In this study, we propose a method to generate quality

examples for distantly-supervised learning of treatment relation extraction. The proposed

method builds on the concept of distant supervision originally proposed by Mintz et al. [23]

— henceforth referred to as traditional distant supervision (TDS). TDS considers any pair

of entities in the same sentence to be a positive example so long as they participate as

part of a known semantic predication in an existing knowledgebase. The proposed distant

supervision method, referred to as MeSH Subheadings based Distant Supervision (MSDS),

relies on MeSH indexing to approximate concept relationships. Specifically, we look for

PubMed abstracts for which there exists both the Therapeutic Use and Therapy Medical

Subject Headings (MeSH) subheadings; these subheadings (also known as qualifiers) inform

1https://www.ncbi.nlm.nih.gov/pubmed/
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us respectively that there is an entity corresponding to a drug or physical agent being used

and that there is also an entity corresponding to a disease for which a therapy is specified.

Although MeSH indexing does not provide explicit concept linkage, the intuition is that

articles with both Therapy and Therapeutic Use subheadings are more likely to convey treat-

ment than articles with only one of them or without any of them. Furthermore, we use the

headings (also known as descriptors) associated with these subheadings (also known as qual-

ifiers) as a concept-level filter when considering candidate entity pairs given all mentioned

entities identified by NLM’s MetaMap [3] concept identification and mapping tool. MSDS

relies on the fact that each MeSH term with a heading and subheading is associated with a

descriptor unique identifier (DUI) and a qualifier unique identifier (QUI) respectively. For

example, the MeSH term “Type 1 Diabetes Mellitus/drug therapy” is annotated with a

DUI of D003922 representing Diabetes Mellitus Type 1 and QUI of Q000188 representing

Drug Therapy. DUIs can be mapped to Concept Unique Identifiers (CUIs) by referencing

UMLS Metathesaurus and therefore matched to concept mentions identified in the article

by MetaMap. If the MeSH term “Insulin/administration & dosage” is incidentally also in-

dexed for the same article, it is reasonable to infer that the article discusses the treatment

of diabetes type 1 through insulin administration. Therefore, sentences in the article where

both entities occur together are considered positive examples for treatment.

An important appeal of distant supervision is the fact that there are no costs in terms of

money and labor. Compared to human-annotated datasets, quality is usually compromised

for quantity. MSDS is capable of generating an abundance of training data without com-

promising as much on quality when compared with TDS. In fact, the quality of examples

extracted by MSDS is closer to human crowd-sourced annotations than TDS. We demon-

strate this by comparing models trained using data generated by MSDS to models trained

on TDS; the models are evaluated using an adjudicated “gold standard” dataset curated by

Dumitrache et al. [7]. Moreover, we demonstrate that examples obtained using MSDS can

be used to augment crowd-sourced data for improved performance at no additional cost in

human annotations. Lastly, we show that using a modified loss function resistant to noisy

labels can improve the performance of models trained on data generated by our method. As

presented, MSDS is limited to treatment-type relations while TDS is readably generalizable
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to other relation types; we discuss this limitation and ways of extending MSDS to other

major relation types including causes, prevents, and diagnose in Section 5.

2. Background

Abacha and Zweigenbaum [1] introduced the MeTAE (Medical Texts Annotation and

Exploration) platform that allows for the extraction and annotation of medical entities and

relationships from medical text. The rule-based method begins with seed concept pairs that

are linked by the “may treat” relation according to the UMLS Metathesaurus. The pair con-

sists of a “problem” concept and a “treatment” concept. For each concept pair, very focused

queries are submitted to the PubMed Central database2; these queries target articles where

the problem concept exists as the major-focused heading of a Therapy (TH) subheading and

the treatment concept exists as an unbounded MeSH heading. The queries are designed

according to the following pattern: “〈problem〉TH[MAJR] and 〈treatment〉/MH”3. The text

of the returned articles are sentence-segmented and each constituent sentence is sent to the

MetaMap tool [3] for concept identification and mapping. Only sentences containing both

concepts of the seed pair are kept for further pattern construction in the form of regular

expressions. MSDS is similar to MeTAE in that both are designed to exploit the MeSH

indexing of PubMed to pinpoint pairs of entities that are related by a treatment semantic

relation; however, there are major differences in terms of both motivation and execution.

We highlight the differences between our method and MeTAE as follows.

• MeTAE leverages MeSH subheadings to curate sentences for manual pattern construc-

tion; the hand-crafted patterns are later used for rule-based relation extraction. On the

other hand, MSDS leverages MeSH subheadings to automatically generate distantly-

supervised examples, without human intervention, for the purpose of training super-

vised relation extraction models.

• MSDS utilizes MeSH subheadings in a more precise manner in that we leverage not

only the Drug Therapy subheading but also the Therapeutic Use subheading, the lat-

2https://www.ncbi.nlm.nih.gov/pmc/
3Note that 〈problem〉 and 〈treatment〉 are placeholders for the queried concept pair
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ter of which allows us to better filter for entities representing a treatment or drug. To

show why this is advantageous, we offer the following example. Suppose we want to ex-

tract positive treatment examples from the sentence “A 15-year-old female adolescent

developed drug hypersensitivity syndrome 4 weeks after starting minocycline

therapy for acne vulgaris.” Also, suppose the related abstract contains MeSH terms

including “Acne Vulgaris/drug therapy”, “Minocycline/therapeutic use”, and “Drug

Hypersensitivity/etiology.” If entities are only bounded by the Drug Therapy subhead-

ing, the system would thus extract triples (minocycline, treats, textbfacne vulgaris)

and (minocycline, treats, drug hypersensitivity syndrome), the latter of which

is not only a negative example of treats but in fact an example for the opposing

causes relation (as hinted by the “etiology” subheading). Given MSDS is bounded on

both the Drug Therapy and Therapeutic Usage subheading, we would correctly ignore

(minocycline, treats, drug hypersensitivity syndrome) as a positive example for

treats. Consequently, we reduce the possibility of introducing training examples to the

supervised model that are not only incorrect but actually contradictive.

The remainder of this section is organized as follows. Section 2.1 provides a background

on the CrowdTruth method and corresponding crowd-sourced dataset. Section 2.2 serves

as an overview of deep learning architectures while Section 2.3 discusses relation extraction

techniques suited for the biomedical domain. In Section 2.4, we discuss an advanced approach

for learning on noisy labels.

2.1. CrowdTruth

Dumitrache et al. [7] showed that, at least in the medical domain, crowd-sourced annota-

tions are of similar or better quality when compared with expert annotations. A method was

proposed, referred to as CrowdTruth, to obtain a sentence-relation score in [0, 1] by measur-

ing disagreement between multiple crowd-sourced annotations; this score, when thresholded,

can be used to determine whether an example (that is, a subject/object pair and its textual

context) is positive or negative with respect to a particular type of relation. The dataset

used in experiments consisted of 3,984 sentences from PubMed that were originally collected

by Wang and Fan [41] and re-annotated via the CrowdTruth method. Herein, we refer to
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Annotation Positives Negatives Total

TDS 683 2695 3378

CROWD 1127 2251 3378

GOLD 291 315 606

Table 1: Counts of positive/negative examples for each set of annotations for treats

the aforementioned dataset as the CrowdTruth dataset. Dumitrache et al. [7] demonstrated

that, with enough crowd-sourced annotations for a particular example (specifically 15), the

quality is on-par or better compared with using a single expert annotator — at least for the

treats and causes predicates. This is accomplished by comparing the performance of models

trained on different methods of annotation and evaluated on a common held-out adjudicated

subset amounting to 975 sentences with “gold standard” annotations.

While the CrowdTruth dataset covers causes and treats, we focus specifically on treats

for which there are 606 sentences with adjudicated “gold standard” annotations (simply

referred to as GOLD labels) that can be used as a basis for direct model comparison. The

remaining 3378 sentences are annotated with TDS and CROWD labels; the former refers to

labels obtained via TDS while the latter refers to the crowd-sourced annotations obtained

via CrowdTruth. The GOLD labels are well-balanced such that there is approximately a 1:1

positive-negative ratio, while TDS and CROWD exhibit more imbalanced ratios of 1:4 and

1:2 respectively. The exact distributions are recorded in Table 1. It is noted that while the

same dataset is used, our experimental results are not directly comparable to those in the

original study [7] given that the authors conducted experiments using 5-fold cross-validation

over the test partition; that is, examples not in a test fold are used for training with the

corresponding TDS or CROWD labels. In this study, we reserve the 606 sentences with gold

annotations strictly for testing while opting for a bootstrapped model averaging setup (more

in Section 4.1) as in a prior work [17] to obtain mean model performance.
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2.2. Deep Learning and Bi-directional LSTMs

The recent state-of-the-art performance in natural language tasks such as text classifi-

cation, relation extraction, named entity recognition, and machine translation are typically

achieved with deep learning approaches such as convolutional neural networks (CNNs) or

recurrent neural networks (RNNs) [4, 5, 15, 17, 38]. These deep learning models are neural

networks designed with many hidden layers that compose meaningful intermediate represen-

tations. High performance is additionally owed to use of neural word embeddings [19, 38, 40].

RNNs are particularly adept at modeling sequences which makes them suitable for natural

language tasks. Long Short-Term Memory (LSTM) [11, 14] networks in particular are a type

of RNN that feature a complex mechanism for memory management such that it is able to

overcome issues such as the vanishing gradients [33] problem. We encourage readers to refer

to Graves [13, Chapter 4] and Goldberg [12, Section 11] for thorough details of LSTMs and

the corresponding derivations of gradients. Regular LSTMs model sequences accumulating

at the last element, while bi-directional LSTMs (BiLSTMs) model a sequence jointly from

both directions. The latter architecture has been shown to perform competitively especially

for relation extraction tasks. With this model, words are fed as input to the network in

the form of word embedding vectors. These word vectors are processed by a bi-directional

LSTM, the output of which is max-pooled over the time-step dimension to produce a final

feature vector. The feature vector is fully-connected to a softmax output layer with two

units corresponding to a binary Yes/No output indicating whether or not there is a treats

relation being conveyed. The additional use of position vectors may further enhance the

performance of relation extraction models in our experience. These are learnable embedding

vectors that represent the offset of a word to either entity.

2.3. Relation Extraction in the Biomedical Domain

Relation extraction approaches in the biomedical domain typically operate by exploit-

ing the shortest dependency path between candidate entities according to a preprocessed

dependency parse tree [2, 10, 20, 21, 37]. The concept of network centrality has also been

explored [32] while other studies, including Frunza et al. [9], rely on more traditional linear

methods that focus on syntactic and lexical features. More recent studies on relation extrac-
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tion approaches are based on exploring meaningful deep learning architectures [17, 21, 36],

including Segment-CNNs [22] and Graph-LSTMs [35]. Meanwhile, there is ongoing research

effort to explore end-to-end relation extraction by jointly modeling entity recognition and

relation detection to exploit inter-task correlations [16, 24, 42].

2.4. Dealing with Noisy Labels

A short-coming of utilizing annotations from distant supervision is noise arising from

erroneously including examples as positive cases even when there is no relationship conveyed.

Conversely, there will be examples that are included as negative cases even when there is

evidence to the contrary. These sources of noise are a primary contributing factor to the

quality of the training data and derived models. Supervised learning on data with noisy

labels has been studied extensively [8]. One popular technique is to modify the loss function

such that it is more robust to noisy labels [25, 34]. Natarajan et al. [25] established that it is

possible to modify the original loss ` to a noise-resistant loss ˆ̀ such that training with ˆ̀ on

noisy data is equivalent to training with ` on clean data — provided the noise rates are known

a priori. Alternatively, it is possible to directly correct test predictions [39] without changing

the architecture. Generally, the former is known as backward correction while the latter is

known as forward correction. Patrini et al. [34] applied these ideas to the deep neural network

setting and formalized an end-to-end, architecture-independent procedure to effectively train

on data with noisy labels. Moreover, they propose a method for approximating the noise

rates in case it is not known a priori. We discuss the modification of the loss function to

deal with noisy labels (referred to as noisy-label loss) in our experiments in Section 4.1.

3. Methodology

In this section, we formalize MSDS as a method for generating distantly-supervised ex-

amples for treatment relation extraction. Section 3.1 describes the article pruning process;

not unlike document triage, the goal is to identify articles that contain expressions of treat-

ment relationships and prune articles that do not. In Sections 3.2 and 3.3, we describe the

formal process for generating positive and negative examples respectively.
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3.1. Article Pruning

MSDS processes articles according to a list of PubMed Identifiers (PMIDs) and gener-

ates examples in the sequential order that they appear. We specifically extract examples

from the title and the abstract (in that order) of the articles associated with each PMID.

Clearly, it is prudent to avoid processing the entire PubMed database as this would be

very time consuming with little return because the vast majority of articles do not pertain

to medical treatment. It is ideal to target only the subset of articles that are very likely

discussing illnesses and related therapeutic agents or procedures. To that end, a list of can-

didate PMIDs is generated by performing a Boolean search on PubMed with the following

query: “therapy[sh] AND (therapeutic use[sh:noexp] OR administration and dosage[sh])”.

This query returns a list of approximately 2.18 million articles that contain both the Ther-

apy and Therapeutic Use subheadings. As an aside, MeSH subheadings take upon a tree

structure such that a parent subheading is only applied if the article does not fit into one

of the more specific child subheadings. Searching for a particular subheading by default

also includes articles with its child subheadings. In the case of the Therapy subheading, by

excluding the noexp (no expansion) option, we consequently allow for all articles with child

subheadings to be included; specifically, we allow for Diet Therapy, Drug Therapy, Nursing,

Prevention & Control, Radiotherapy, Rehabilitation, Surgery, and Transplantation. In the

case of Therapeutic Use, there are three child subheadings to consider: Administration &

Dosage, Adverse Effects, and Poisoning. Here, we allow for Administration & Dosage while

disallowing Adverse Effects and Poisoning which would otherwise be counterproductive with

respect to the original objective. Henceforth, when mentioning Therapy or Therapeutic Use,

we implicitly refer to the subheading itself and all child subheadings except the ones deemed

“counterproductive.”

3.2. Positive Examples

Before processing each article, we randomly shuffle the list of PMIDs according to a

seed value. This allows us to extract examples uniformly such that the distribution of the

resulting data is not biased toward any subheadings or publication period. We re-use the

same seed value to naturally generate negative examples via the procedure described later
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Figure 1: A simple example illustrating how a positive instance for the treats relation is extracted

from a sentence appearing in the PubMed abstract with PMID 21148442

in Section 3.3. In order to generate positive examples, we apply the following procedure to

each article in the shuffled list denoted as a sequence x1, . . . , xn.

Allowable subject and object entities for xi are identified by gleaming the document’s

MeSH terms. Recall from Section 1 that a heading/descriptor is associated with a DUI and

a subheading/qualifier is associated with a QUI. Generally, the former identifies a concept

and the latter describes a qualifier with respect to the concept. Let X̄ i be the set of con-

cepts (DUIs mapped to CUIs via the UMLS [29] database) associated with the Therapeutic

Use (Q000627) and Administration & Dosage (Q000008) subheadings; X̄ i intuitively serves

as the set of allowable subject concepts for the treatment relation. For candidate object

concepts, we denote Ȳ i as the set of all concepts (mapped to CUIs) associated with the fol-

lowing subheadings: Therapy (Q000628), Diet Therapy (Q000178), Drug Therapy (Q000188),

Nursing (Q000451), Radiotherapy (Q000532), Rehabilitation (Q000534), Surgery (Q000601),

and Transplantation (Q000637). Prevention & Control are excluded as they would be more

appropriate for the prevents predicate despite the potential for overlap.

Next, we perform sentence splitting on xi to obtain a list of mi sentences si1, . . . , s
i
mi .

This step is important as we are only concerned with intra-sentence relations. Let C be the

set of all possible CUIs. We apply the following procedure for each sentence sij:
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1. The MetaMap tool is used to annotate sij with a set of conceptsMi
j; here, each concept

is defined as a triple (α, β, c) where α ∈ N is the beginning character offset, β ∈ N

is the ending character offset, and c ∈ C is the CUI of the concept. When utilizing

MetaMap, we disable the Word Sense Disambiguation (WSD) option4 and we ignore

concepts with mentions that are non-contiguous5.

2. The set of candidate subject concepts X i
j for sentence sij is obtained by computing

the intersection of concepts identified by MetaMap and allowable subject concepts as

informed by the MeSH indexing for document i. Formally, we define this set as

X i
j = {(α, β, c) : (α, β, c) ∈Mi

j ∧ c ∈ X̄ i} .

Similarly, Y i
j is the list of candidate object concepts, defined as

Y i
j = {(α, β, c) : (α, β, c) ∈Mi

j ∧ c ∈ Ȳ i} .

3. The set of positive examples [Z+]ij to be extracted from sentence j of article i is obtained

by considering all pairs of candidate subject and object concepts with non-overlapping

mentions. Concretely,

[Z+]ij = {((α, β, c), (α′, β′, c′)) :

(α, β, c) ∈ X i
j ∧

(α′, β′, c′) ∈ Y i
j ∧

((α < β < α′ < β′) ∨ (α > β > α′ > β′))} .

Here, each extracted example is a pair of concepts along with their mention offsets.

4The WSD option determines the best concept given context if there are multiple potentially valid CUIs

for a particular mention. Since we are matching identified concepts directly to MeSH headings, irrelevant

CUIs will naturally be ignored and enabling WSD as a premature filtering step will only hurt recall.
5To clarify, we ignore mentions that have multiple pairs of starting and ending offsets each corresponding

to a different segment of the full mention. In cases where there are multiple contiguous mentions of the same

concept, we treat each mention as a separate entity.
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The sentence and character offsets of each entity mention are necessarily recorded if they

are to serve as training examples. Since it is possible for a single CUI to map to multiple

mentions (corresponding to multiple start/end offset pairs), we consider each mention to be

a distinct entity so that the examples are consistent with respect to linguistic considerations.

Retaining this nuance allows more flexibility in future work which may involve identifying

and purging “positive” examples that are not semantically sound. For example, consider

the sentence, “Blood sugar levels are regulated by the hormone insulin1; man-made insulin2

is used to treat diabetes.” Here, both (insulin1,diabetes) and (insulin2,diabetes) will be

extracted as positive examples, but we only consider (insulin2,diabetes) to be semantically

sound given the linguistic context. Once each sentence is processed and all predications

are extracted from the article abstract, we proceed to the next article in the sequence. An

example illustrating the procedure is shown in Figure 1.

3.3. Negative Examples

Discriminative models require negative examples in addition to positive examples. Herein,

we describe a complementary method to generate negative examples. The process is similar

to positive example generation; however, external knowledge is leveraged to ensure that we

only extract non-trivial examples and that we only extract examples likely to be negative.

That is, we wish to avoid extracting an excessive number of false negatives while retaining

the more nuanced or borderline cases. The proposed method heavily relies on the UMLS

Semantic Network [26] (SemNet) which categorizes concepts and relationships in a hierar-

chical taxonomy. SemNet assigns broad categories to concepts (that is, CUIs) in the form

of Semantic Types [28] (SemTypes). Moreover, the so called Semantic Relations [27] (such

as affects, causes, uses, and treats) are associated with a set of SemType pairs serving as

plausible entity types for that particular relationship. Intuitively, the SemNet constraints

for treats provides a basis for choosing negative examples that are likewise plausible and

therefore more nuanced. A training example in which a drug “treats” another drug is clearly

a negative case, but its utility is limited if the goal is to train a robust classifier. Hence, as

a rule, only negative examples with subject/object concepts that are consistent with Sem-

Net constraints for the treats relation in SemNet are extracted. Let T denote the set of all
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SemTypes defined by UMLS. As a preliminary step, we compute R ⊆ T × T as the set of

subject-object SemType pairs valid for the treats relation according to SemNet.

SemMedDB [18, 31], a repository of semantic predications extracted by the rule-based

relation extraction tool SemRep [30], serves as another knowledge source that is used to filter

out potential false negatives. Specifically, if a semantic predication appears in SemMedDB

with the treats relation, then it is disregarded it as a candidate negative example. Essentially,

recall is sacrificed in order to limit the introduction of false negatives (and therefore noise).

With that in mind, we define S ⊆ C × C as the set of subject-object CUI pairs that appears

in SemMedDB at least once for the treats relation.

A feature of this approach is that it is capable of naturally generating negative examples

alongside positive examples from the same list of abstracts. Consequently, the positive-

negative imbalance naturally reflects the imbalance observed in a real-world setting. Here,

positive examples are generated first via the method in Section 3.2 and then used as a filter

when generating negative examples. Intuitively, a unique predication that has already been

extracted as a positive example should not be extracted again as a negative example.

Using the same notations established in Section 3.2, the following procedure is proposed

for the extraction of negative examples from sentence sij:

1. As in generating positive examples, sij is annotated with a set of concepts M̂i
j using

the MetaMap tool. However, WSD is enabled such that each mention is mapped to

only one of potentially many concepts. This is necessary as it is no longer possible to

rely on MeSH subheadings to inform us of allowable subject and object concepts.

2. Next, we compute the set of predications based on the following filtering criteria. Each

subject-object pair must follow the SemType constraints for treats, must not exist as

a predication in SemMedDB, and must not exist as a previously-extracted positive

example. Moreover, as when extracting positive examples, the entity mentions should

likewise not overlap. Formally, the set of negative examples [Z−]ij extracted from article
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i, sentence j is defined as

[Z−]ij = {((α, β, c), (α′, β′, c′)) :

(α, β, c) ∈ M̂i
j ∧

(α′, β′, c′) ∈ M̂i
j ∧

(type(c), type(c′)) ∈ R ∧

(c, c′) /∈ S ∧

((α, β, c), (α′, β′, c′)) /∈ [Z+]ij ∧

((α < β < α′ < β′) ∨ (α > β > α′ > β′))}

where type(c) is the SemType of concept c according to UMLS.

4. Experiments and Results

In order to evaluate the quality of our dataset, we trained supervised models using TDS

and CROWD labels as well as data generated by our distant supervision method (simply

referred to as MSDS ). We observe the performance of trained models as a proxy for data

quality as in past work [7]. Of the 3984 examples in the CrowdTruth dataset, 606 held-out

sentences with GOLD labels are used exclusively for testing. The remaining 3378 examples

with TDS and CROWD labels are used to train models that are evaluated to assess data

quality. We provide more detail about our experimental design in Section 4.1 and discuss

the corresponding results in Section 4.2.

4.1. Experimental Setup

As deep neural networks are not guaranteed to outperform traditional linear models for

this particular task, we consider both traditional and deep neural models in our experiments;

hence, we include both a traditional machine learning model (namely, logistic regression)

and a deep learning model (namely, the BiLSTM as described in Section 2.2). The BiLSTM

model is implemented as described in Kavuluru et al. [17, Section 5B]; however, the number

of labels is fixed to 2 as the target task is strictly binary classification. This particular

model is suitable as it is designed specifically for the task of relation extraction; with this
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in mind, the hyper-parameters are mirrored from [17] and fixed across all experiments to

ensure a fair comparison. We additionally include a variant of the BiLSTM model with a

modified noise-resistant loss function as describe in Section 2.4, referred to as BiLSTM-NLL.

The implementation of the noisy-label loss is based on the backward correction procedure

described in Patrini et al. [34, Section 4.1]. The matrix representing the approximated

noise rates used in the cited method is computed by following the procedure for noise rate

estimation [34, Section 4.3], where the set of “testing” instances for noise approximation is a

sample of MSDS-generated data with 3000 examples. Note that regardless of the model, we

perform an entity-binding step, wherein mentions of the subjects and objects are replaced

with generic SUBJECT and OBJECT tokens respectively, as in prior work [17]. This implies

that we are effectively evaluating models based entirely on its ability to learn the linguistic

context without regard for subject-object pair correlations.

Bootstrapped Ensembling. The performance of each variant is measured based on the boot-

strapped model averaging [17] technique wherein average behavior is studied through build-

ing and evaluating large numbers of ensembles. This is motivated by the fact that deep

neural networks are trained using stochastic gradient descent; the result is that we will of-

ten find parameters corresponding to some “good enough” local minimum as opposed to

an optimal global minimum. Different random parameter initializations of the network will

converge to different solutions corresponding to these local minima. In order to arrive at

a more stable model, it is typical to train a number of such models (each with a different

parameter initialization) as part of an ensemble in an effort to improve both stability and

accuracy. In a prior work [17], we proposed an experimental setup in which 20 deep neural

models were trained for each architecture as part of a sampling pool. 10000 ensembles are

assembled and evaluated by randomly sampling 10 models from the pool for each ensemble.

With this setup, it is possible to assess mean performance and corresponding confidence in-

tervals such that conclusions are drawn based on statistical significance. We apply the same

methodology to assess the average behavior of each variant in this study. Although intended

for deep neural networks, we apply bootstrapped model averaging to all models uniformly,

including logistic regression, to ensure a fair comparison.
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Method TDS MSDS CROWD

Logistic Regression 64.57 ± 0.00646 82.86 ± 0.00889 90.46 ± 0.00187

BiLSTM 63.59 ± 0.02015 81.18 ± 0.01334 90.82 ± 0.00504

BiLSTM-NLL 64.33 ± 0.01708 81.38 ± 0.01371 90.57 ± 0.00441

Table 2: Results comparing quality between traditional distant supervision (TDS ), Mesh Sub-

headings based Distant Supervision (MSDS ), and crowd-sourced (CROWD) labels. We report

the 95% confidence interval around mean PR-AUC over 10,000 ensembles across linear and deep

neural methods.

4.1.1. Assessing MSDS Data Quality

We measure performance as a proxy for label quality using the Precision-Recall Area

Under the Curve [6] (PR-AUC) metric instead of the more popular F1 metric. Our rationale

for this decision is as follows. The difference in label distribution (even when binary) can

serve as a misleading factor when comparing the quality of datasets. A model trained on a

training dataset having a similar label distribution to that of the test set is at a significant

advantage regardless of the quality of individual examples; this is especially the case when

the F1 metric is considered given performance is dependent on predictions made at some

probability estimate threshold (typically 50%). A model-wide evaluation method such as PR-

AUC is more suitable when evaluating with an imbalanced dataset since it is not anchored at

a specific threshold. Recall that the GOLD labels have a positive-negative ratio of 1:1 while

TDS and CROWD labels have a ratio of 1:4 and 1:2 respectively. Given this imbalance, we

measure data quality using PR-AUC as the primary evaluation metric so that imbalance-

insensitive comparisons can be made between CROWD/MSDS and TDS labels. We report

the results of this experiment in Table 2 for all three methods.

4.1.2. Augmenting Crowd-Sourced Labels with MSDS

In addition to assessing data quality of MSDS labels, we also designed an experiment

to assess performance gains from augmenting the crowd-sourced examples (expensive to

produce) with examples generated via MSDS (free and abundant). Here, we use mean

F1 as the primary evaluation metric as we can overcome any imbalance issues by simply
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N CROWD 1:1 CROWD/MSDS 1:2 CROWD/MSDS 1:3 CROWD/MSDS
L

og
is

ti
c

R
eg

re
ss

io
n

3000 78.47 ± 0.00779 73.33 ± 0.01306 70.25 ± 0.01469 69.54 ± 0.01790

6000 - 77.81 ± 0.00971 75.99 ± 0.01326 74.81 ± 0.01559

9000 - - 78.60 ± 0.00781 76.30 ± 0.00905

12000 - - - 77.32 ± 0.00570

B
iL

S
T

M

3000 80.84 ± 0.01499 79.22 ± 0.01917 78.08 ± 0.01681 77.08 ± 0.01839

6000 - 81.79 ± 0.01361 80.12 ± 0.01269 79.32 ± 0.01529

9000 - - 80.56 ± 0.01117 79.56 ± 0.01259

12000 - - - 79.34 ± 0.01263

B
iL

S
T

M
-N

L
L 3000 80.86 ± 0.01324 80.82 ± 0.01808 78.64 ± 0.01798 76.32 ± 0.02145

6000 - 82.02 ± 0.01572 80.11 ± 0.01109 79.40 ± 0.01447

9000 - - 80.83 ± 0.01188 79.75 ± 0.01259

12000 - - - 79.17 ± 0.01181

Table 3: Results showing change in mean F1 with respect to varying training set size and pro-

portion of CROWD to MSDS examples. We report the 95% confidence interval around mean F1

over 10,000 ensembles across linear and deep neural methods.

generating an MSDS based dataset such that there is positive-negative label ratio of 1:2 to

match that of the CROWD labels. Moreover, we contend that F1 is more important for

user-end applications since it is based on evaluating concrete label predictions.

Henceforth, we refer to models trained on data having a shared annotation method (or

some combination thereof, more later) as being in the same “class” of models. For example,

we refer to models trained on TDS/CROWD labels as simply being in the TDS/CROWD

class of models. For the MSDS class of models, we generated three times as many examples

as available in the crowd-sourced training set amounting to a total of 10,134 examples with

the same label distribution. For the experiment, the exact number of examples generated

by MSDS is immaterial as long as it is at least 9000.

To assess gains from augmenting crowd-sourced examples with MSDS, we include the

following additional classes of models: 1:1 CROWD/MSDS, 1:2 CROWD/MSDS, and 1:3

CROWD/MSDS. Each of these classes are named based on the ratio of crowd-sourced exam-

ples to MSDS-based examples used to train the model. We evaluated each class of models

17



at fixed dataset sizes 6 of N ∈ {3000, 6000, 9000, 12000}.The purpose of evaluating at large

values of N is to observe the scalability of model performance where crowd-sourced data is

augmented with MSDS data. Herein, we refer to a particular N and class of model combi-

nation as a “variant”. Note that when N is smaller than the total number of examples we

have for a particular class of models, we simply sample N random examples from the pool of

data available. For example, the models in the pool for CROWD at N = 3000 will each be

trained using a different random sample of the 3378 available. Note that if we have less data

than available for some N and some class of models, we ignore that corresponding variant.

For example, we can evaluate CROWD at 3000 but not 6000, 9000, and 12000 since we only

have 3378 examples total. Moreover, we can evaluate 1:1 CROWD/MSDS at 3000 and 6000

but not 9000 and 12000 for similar reasons. We report these results in Table 3.

4.2. Results and Discussion

Table 2 displays results from our experiments to assess the quality of examples. Here,

we observe that CROWD and TDS achieve roughly 90% and 65% PR-AUC respectively,

while MSDS achieves a “middle-ground” of 80% PR-AUC across the three methods. Clearly,

automatically-curated examples are incapable of competing against human annotations with

respect to raw quality. However, we argue that there is value in being able to achieve ap-

proximately 80% in mean PR-AUC with MSDS when crowd-curated annotations achieve ap-

proximately 90% mean PR-AUC. This is especially the case when we consider that CROWD

sentences and the test set sentences used to evaluate both CROWD and MSDS examples

were collectively obtained via the same curation method (using the same seed articles and re-

lations). Therefore, CROWD examples have a natural distributional advantage over MSDS

examples within our evaluation framework. MSDS is therefore closer to CROWD in terms

of performance compared with TDS. These results show that MSDS -generated examples are

higher in quality compared to those obtained via traditional distant supervision examples

and are actually closer in quality to crowd-sourced annotations.

Next, we examine the potential for using MSDS to augment crowd-sourced labels. As

6Each example in the dataset constitutes a pair of concepts, the sentence in which the pair is observed,

and a Yes/No label indicating whether or not the pair is positive for the treats relation.
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observed in Table 3, logistic regression achieves 78.47% mean F1 compared to 80.84% mean

F1 by BiLSTM on CROWD at N = 3000. As the 95% confidence intervals do not overlap,

the improvements are statistically significant. This indicates that deep learning may be

more suitable than logistic regression for this particular task. We note that the deep neural

model with noisy-label loss also exhibits better performance than without in most cases

when MSDS labels are added. More importantly, we observe that regardless of method

– but more so for deep learning models – there is an advantage in augmenting CROWD

examples with instances generated by MSDS. And we can also observe that more data is

not necessarily better, as performance peaks at certain proportions and tend to decrease

when more noisy data is added. With BiLSTM, there is an approximate gain of one F1

point arriving at 81.79% when augmenting the 3000 CROWD examples with an additional

3000 MSDS examples. We see a slightly higher increase at 82.02% for the BiLSTM-NLL

model. These improvements are statistically significant at the 95% level based on comparing

confidence intervals.

0 10 20 30 40 50
Number of examples added from MSDS to CROWD (%)

80.0

80.5

81.0

81.5

82.0
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84.0

M
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n 
F1

Figure 2: Change in mean F1 w.r.t. amount of examples added from MSDS to CROWD, indicated

as a proportion of CROWD dataset size, for the BiLSTM-NLL model.

Based on results from Table 3, augmenting crowd-based examples with high quantities of

MSDS is not necessarily better. As such, we perform an auxiliary experiment to determine

an optimal balance between CROWD and MSDS examples, focusing on the case where

there are fewer MSDS examples than CROWD examples. We find that by augmenting 3000

CROWD examples with only an additional 1500 (+50%) MSDS examples, the resulting
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model achieves 81.92% mean F1 with BiLSTM-NLL. The result is as high as 83.22% mean F1

when evaluating on 3000 CROWD examples augmented with 750 (+25%) MSDS examples.

Based on these results, we can see that there is an optimal ratio of 4:1 between CROWD and

MSDS examples where peak performance is observed. This trend is visualized in Figure 2;

we note that the shaded area in this case represents standard deviation.

4.3. Error Analysis

In this section, we perform error analysis by assessing performance based on pairs of

subject/object semantic types to identify cases that are difficult for a model trained on MSDS

generated examples. In Table 4, we examine evaluation results on the test set by BiLSTM-

NLL trained on MSDS at N = 3000 partitioned by pairs of subject/object SemTypes. We

only include results for cases where there are at least 10 examples. An interesting aspect of

the test set (with GOLD labels) is that there are many SemType pairs for which there are

no positive examples; these pairs can be identified by rows where both true positives (TPs)

and false negatives (FNs) rates are zero. Of course, this leads to an F1 of 0 which can be

misleading at first glance; accuracy is more informative in this case. An example of this

phenomenon exists when “Disease or Syndrome” occur as the SemType for both the subject

and object — there are 50 such examples in the test set. These are all negative cases for treats

which is consistent with reality given it is atypical for a disease to treat another disease. This

phenomenon is problematic for models trained on MSDS as the corresponding examples are

bounded by Semantic Network constraints; hence, there are no MSDS examples generated

where both the subject and object are diseases. In other words, MSDS-based models are

not trained on trivially negative examples (e.g., a disease treating another disease) and may

have difficulties dealing with trivially negative cases at test time. It is possible to overcome

this issue by introducing a filtering step in which we predict as negative all test examples

that fail to adhere to SemNet constraints. However, this may adversely impact recall given

there exists examples of treatment relations (in the wild) where the subject/object do not

necessarily adhere to SemNet constraints.

One interesting case stems from the SemType pair “Neoplastic Process” (subject) and

“Disease or Syndrome” (object) in which there is exactly one positive case in the groundtruth

20



Subject SemType Object SemType TP TN FP FN Total P (%) R (%) F (%) Acc (%)

Organic Chemical Disease or Syndrome 74 11 10 25 120 88.10 74.75 80.87 70.83

Disease or Syndrome Disease or Syndrome 0 40 10 0 50 0.00 0.00 0.00 78.43

Amino Acid, Peptide, or Protein Disease or Syndrome 20 11 2 6 39 90.91 76.92 83.33 79.49

Organic Chemical Sign or Symptom 9 4 0 9 22 100.00 50.00 66.67 59.09

Neoplastic Process Finding 0 18 3 0 21 0.00 0.00 0.00 85.71

Neoplastic Process Disease or Syndrome 0 14 4 1 19 0.00 0.00 0.00 73.68

Organic Chemical Mental or Behavioral Dysfunction 13 1 0 3 17 100.00 81.25 89.66 82.35

Organic Chemical Pathologic Function 5 3 0 8 16 100.00 38.46 55.56 50.00

Organic Chemical Neoplastic Process 11 0 0 3 14 100.00 78.57 88.00 78.57

Neoplastic Process Pathologic Function 0 8 4 0 12 0.00 0.00 0.00 66.67

Neoplastic Process Sign or Symptom 0 10 2 0 12 0.00 0.00 0.00 83.33

Bacterium Disease or Syndrome 0 6 5 0 11 0.00 0.00 0.00 54.55

Pharmacologic Substance Disease or Syndrome 2 2 0 6 10 100.00 25.00 40.00 40.00

Table 4: Results at N=3000 for BiLSTM-NLL partitioned by subject/object semantic type

corresponding to a single false negative by the MSDS-based model. The example is as

follows, with the subject and object underlined: “In patients with rapidly advancing disease

characterized by B symptoms, massive lymphadenopathy and hepatosplenomegaly, consider

CLL transformation (see disease specific drug treatment in patients with transformed CLL).”

CLL as the subject refers to chronic lymphocytic leukaemia. From inspection, the linguistic

phrasing in this case is understandably difficult for a machine learning system; the connecting

word here is “consider”, which is not as strong of an indicator as “treats” or “cures”. There

are subtle, logical inferences to be made that makes this and similar examples difficult for

machine learning models. Moreover, CLL as a neoplastic process is more likely to be the

object of a treats relation and the fact that it occurs as the subject in this case could be

a puzzling factor. This is a stronger positive example and more semantically consistent if

we consider the full mention “CLL transformation” to be the subject; that is, we suspect a

minor error in the entity annotation that makes this example particularly difficult.

Another issue that leads to false negatives is the way in which entities are annotated when

there are multiple mentions of a unique concept entity in the same sentence. First, we note

that relation classification is performed between mentions of entities wherein the subject

and object entities are bound to generic SUBJECT/OBJECT tokens. Hence, predictions

are highly dependent on context. Consider the following sentence as an example, “In the

trial based analysis, fondaparinux1 was estimated to prevent 15.1 thromboebolic events per
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1000 patients at three months compared with enoxaparin; fondaparinux2 produced cost

savings per patient at 30 days, 3 months, and 5 years postdischarge.” Mentions of the

relevant concepts are underlined. The concept fondaparinux has two mentions in the sentence

which are discerned via numbered subscripts. The issue, in this case, stems from the fact

that the gold treatment relation annotated for this sentence include (fondaparinux2, treats,

thromboebolic events) instead of (fondaparinux1, treats, thromboebolic events). Based on

manual examination of the linguistic context, the first mention of the subject (fondaparinux1)

is directly involved in a semantic relationship with the object (thromboebolic events), while

the second mention of the subject (fondaparinux2) is only involved in the relationship by

association with the first mention. Hence, there is a logical inference aspect to the problem

arising from the way entities are annotated that is not handled well by the model.

5. Extending to Other Relation Types

Despite its potential, it is important to stress that MSDS as presented is limited to

treatment predications while TDS is more readily generalizable to other types of relations.

However, we contend that it is possible to extend MSDS to other highly-important, functional

relation types in the medical domain. For example, the Prevention & Control subheading

may be straightforwardly used in place of the Therapy subheading, with minimal changes to

the proposed method, to extract prevents instead of treats relations. Moreover, we may con-

sider utilizing the Etiology subheading in combination with subheadings including Methods

and Complications to identify the candidate entities for a causes relation. As an example,

consider an abstract containing the following sentence: “This review provides an up-to-date

insight into the aetiology of posterior shoulder dislocations; our results showed that seizures

were most commonly implicated.” The associated MeSH terms “Seizures/complications”

and “Shoulder Dislocation/etiology” can be leveraged to extract an example for the relation

triple (seizures, causes, shoulder dislocation). Likewise, the MeSH subheading Diagnosis in

conjunction with Methods may be used to identify examples for the diagnose relation type;

e.g., the co-occurence of “Behcet Syndrome/diagnosis” and “X-Ray Computed Tomogra-

phy/methods” may indicate that Behcet’s disease is diagnosable by X-Ray. Not only that,

it is possible to move beyond binary treatment relations given MeSH indexing may include
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multiple terms with the Therapeutic Use subheading for a single article. That is, we can

leverage MeSH terms to identify instances of combination therapies, wherein the treatment

relation involves two or more drugs. However promising, these research avenues require

further evaluation and analysis which is left for future work.

6. Conclusion

In this study, we introduced a distant supervision approach for relation extraction of

medical treatment predications by exploiting MeSH subheadings. We demonstrated that our

distant supervision method is a desirable compromise between traditional distant supervision

and crowd-sourced annotations with the advantage that it is of reasonable quality and can

be obtained without the costs associated with human involvement. We also showed that it

is possible to use data obtained via our proposed method to augment existing crowd-sourced

data for performance gains and this can be further improved by using a noise-resistant loss.

In future efforts, we anticipate using the proposed distant supervision method to facilitate

production of a large, high-quality human-annotated dataset solely for medical treatment

relations.
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[10] Katrin Fundel, Robert Küffner, and Ralf Zimmer. RelEx - relation extraction using dependency parse

trees. Bioinformatics, 23(3):365–371, 2007.

[11] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with

LSTM. Neural computation, 12(10):2451–2471, 2000.

[12] Yoav Goldberg. A primer on neural network models for natural language processing. Journal of Artificial

Intelligence Research, 57:345–420, 2016.

[13] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, volume 385 of Studies in

Computational Intelligence. Springer, 2012. ISBN 978-3-642-24796-5. doi: 10.1007/978-3-642-24797-2.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–

1780, 1997.

24



[15] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings of the

2013 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1700–1709,

2013.

[16] Arzoo Katiyar and Claire Cardie. Going out on a limb: Joint extraction of entity mentions and

relations without dependency trees. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), volume 1, pages 917–928, 2017.

[17] Ramakanth Kavuluru, Anthony Rios, and Tung Tran. Extracting drug-drug interactions with word

and character-level recurrent neural networks. In Fifth IEEE International Conference on Healthcare

Informatics (ICHI), pages 5–12. IEEE, 2017.

[18] Halil Kilicoglu, Dongwook Shin, Marcelo Fiszman, Graciela Rosemblat, and Thomas C Rindflesch.

Semmeddb: a pubmed-scale repository of biomedical semantic predications. Bioinformatics, 28(23):

3158–3160, 2012.

[19] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar,

October 2014. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/

D14-1181.

[20] Jiexun Li, Zhu Zhang, Xin Li, and Hsinchun Chen. Kernel-based learning for biomedical relation

extraction. Journal of the Association for Information Science and Technology, 59(5):756–769, 2008.

[21] Shengyu Liu, Kai Chen, Qingcai Chen, and Buzhou Tang. Dependency-based convolutional neural

network for drug-drug interaction extraction. In 2016 IEEE International Conference on Bioinformatics

and Biomedicine (BIBM), pages 1074–1080. IEEE, 2016.
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